devoir-de-synthese-n°1 Correction

fxercice Nº1 (5points):

1- Répondre par « vrai » ou « faux »:

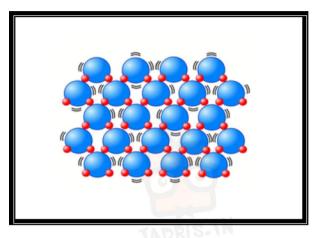
La matière est continue	Faux
La molécule conserve les propriétés de la matière	Vrai
L'unité internationale de mesure de la solubilité est le Kg.m ⁻³	faux.
La valeur de la masse volumique de l'eau est 1000 Kg.m ⁻³	Vrai
Le gaz butane se dissout facilement dans l'eau	faux

Frencice Nº2 (10 points):

😭 www.Tadris.TN 🛂 55.635.666 🛂 26.222.159

On donne:

- La solubilité du sel de cuisine dans l'eau est S = 360g.L⁻¹
- La relation qui nous permet de calculer la concentration est $C = \frac{m}{v}$


Les élèves de 8éme année ont dissout une masse $m_1 = 48$ g de sel de cuisine dans un volume V = 0.2 L d'eau pour obtenir une solution (S_1) :

1- Donner la définition de la solubilité :
la concentration de la solution saturée est la concentration
maximale Lite Solubilite (S)
2- Nommer :
a- Le sel de cuisine : le solute
b- L'eau: le sol vant
في دَارِكْ المَّنَّةِ عِلْمَ قَالِمَ الْمِعْلِيلِ فِي اللَّهِ الْمِعْلِيلِ فِي اللَّهِ الْمِعْلِيلِ فَي

c- La solution obtenue: Solution aqueux de sel de cuisine-				
3- a- Calculer la concentration C_1 de la solution (S_1) $C_1 = \underbrace{M_1}_{V} = \underbrace{L_1 S}_{O(2)} = \underbrace{240 \ g \ L_1}_{O(2)}$				
b- La solution (S ₁) est-elle saturée ou non ? Justifie votre réponse				
C, < S = La solution n'est pas saturée				
4- On ajoute une masse $m_2 = 26g$ de sel de cuisine à S1 pour obtenir une solution (S ₂)				
a- Calculer la concentration C ₂ de la solution (S ₂)				
C_ m2+m1 = 2b+48 = 370 g. L-1				
b- La solution (S2) est-elle saturée ou non? Justifie votre réponse :				
Le solution S est saturée Con max - SxV = 72 g < m + m = 74				
5- On ajoute un volume V_2 = 0.1 L à la solution (S_2) pour obtenir une solution (S_3)				
a- Calculer la concentration C3 de la solution (S ₃)				
$\frac{C = \frac{m_2 + m_1}{3} = \frac{74}{v_1 v_2} = \frac{246,67}{0.3} = \frac{1}{246,67}$				
6- a- Comparer les concentration C_1 , C_2 et C_3				
b- Citer les facteurs agissants sur la solubilité ?				
b- Citer les facteurs agissants sur la solubilité? be pature de soluté				
· la température				
Fretcice N°3(6 points):				
<u>fxetcice N°3(6 points):</u>				
1- Donner la définition d'une molécule :				
la plus petite particule qui puisse être obtenue lors de la divisi bilité de la matière.				
2- Compléter les vides par les termes manquants				
Vaporisation - désordonnées - corps pur moléculaire – fusion –				
molécule – ordonnées - matière				
TADRIS-IN				

Le Corps pur moléculaire est constitué de molécules	identique^
Les molécules d'un corps solide sont	
Les molécules d'un corps liquide sont désordonnées.	
Le passage de l'état solide à l'état liquide est appelé	

3- Représenter les molécules de l'état solide :

4- Citer trois exemples des corps purs moléculaires :

a-	لـ	le sucre
----	----	----------

